
#RedHatOSD

GESTIONE DELLE TRANSAZIONI IN
ARCHITETTURE DISTRIBUITE

Mauro Vocale Solution Architect
Giovanni Marigi Principal Consultant

#RedHatOSD

apiVersion: redhat/v2
kind: PrincipalConsultant
metadata:
 name: Giovanni Marigi
 namespace: ITI
 websites:
 linkedin: giovannimarigi
 github: hifly81
 twitter: hiflyisflying
 annotations:
 specialist: openshift, cloud, integration, kafka, bpm
 labels:
 sports: mountain bike, trekking
spec:
 replicas: 1
 containers:

- image: redhat.io/giovanni:latest

#RedHatOSD

Microservices

The microservice architecture is the main trend in
information technology and we learned a lot about
it during these years ...

#RedHatOSD

What are Microservices?

“…an approach to developing a single application as a
suite of small services, each running in its own process
and communicating with lightweight mechanisms,
often an HTTP resource API.”

Martin Fowler

#RedHatOSD

 MICROSERVICES ADVANTAGES

• Fast to develop, easier to maintain and understand
• Starts faster, speeds up deployments

• Fault isolation

• Services can be scaled independently

• Deltas and patches can be applied to each microservice individually

• Local changes can be deployed easily

• Flexible choice of technology

• Security can be applied to each microservice as opposed to the whole system in a
blanket approach

#RedHatOSD

 MICROSERVICES DISADVANTAGES

• Additional architectural complexity of distributed systems
○ Maintaining strong consistency is extremely difficult

○ Testing a distributed system is difficult

○ Requires a shift in coding paradigm:
Change in approach to application architecture design and testing

• Significant operational complexity. Requires a high degree of automation

○ Deployments require coordination and rollout plan

#RedHatOSD

MICROSERVICES FRAMEWORKS

There are many ways to build a microservice

#RedHatOSD

 Microservices’ilities
Platform and frameworks
cover a lot … but not all ...

MyService

Monitoring

Tracing

API

Discovery

Invocation

Resilience

Pipeline

Authentication

Logging Elasticity

#RedHatOSD

MICROSERVICES DILEMMA: How to handle transactions?

SAGA!

2PC, XA,
BULK
BATCH!

#RedHatOSD

Microservices and transactions

 You’ve successfully decomposed your monolithic
 application into several microservices.

 Every microservice has its own state and a local store (RDBMS, NoSQL, file store, ...)

 Microservices can emit events when a state changes.

 Microservices can react to events.

But you still want that a business process spanning several services to be
consistent and correct regardless of the level of decomposition of your
application.

#RedHatOSD

Why distributed transactions don’t work
Traditional distributed transactions are implemented using a two-phase commit, briefly 2PC.

Why can’t we use 2PC in microservices architecture?

● You don’t have a single shared store anymore, every service has its own data store
(micro-db)

● A microservices architecture involves many parties, realized using different technologies
that adhere to different specifications: 2PC implicitly assumes closely coupled environment

● Synchronization and isolation reduces performance and scalability.
● A business function potentially lasting for hours or days: lock strategy doesn't work well in

long duration activities

#RedHatOSD

Microservices: eventual consistency

Consistency states that the entire software system should be in a valid state.

2PC guarantees the consistency with a pessimistic approach; all the changes must be done at
the same time or rollback.

Microservices architectures at the opposite guarantee the consistency with a more relaxed
approach. The state of the entire system can’t be valid at any time but at the end of the
business transaction. The system is eventually consistent.

Eventual consistency is not easy achieve and there is no a magic box out there.

#RedHatOSD

Saga Pattern

Le Radeau de la Méduse -
Théodore Géricault, 1818-19

#RedHatOSD

Saga Pattern: overview
Saga is the de facto solution to guarantee consistency in a microservices architecture.

Saga is not a new pattern [1] and it can be applied also in traditional monolithic architectures.
“For specific applications, it may be possible to alleviate the problems by relaxing the requirement
that an LLT be executed as an atomic action. In other words, without sacrificing the consistency of
the database, it may be possible for certain LLTs to release their resources before they complete,
thus permitting other waiting transactions to proceed”

Saga usually performs better than distributed transactions and doesn’t require all the services to
be available at the same time.

Developers need to take care of the implementation of the Saga.

[1]
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

#RedHatOSD

Transaction ACID Properties

● Atomicity: this property guarantees that each transaction is treated as a single "unit",

which either succeeds completely, or fails completely

● Consistency: this property is related to the logical consistency of the data. When a new

transaction starts, it must ensure that the data maintains a state of logical consistency,

regardless of the final outcome

● Isolation: this property ensures that concurrent execution of transactions leaves the

database in the same state that would have been obtained if the transactions were

executed sequentially

● Durability: this property guarantees that all of the changes made during a transaction,

once it is committed, it must be persistent and definitive, even in the case of system

crashes

#RedHatOSD

Saga Pattern: ACD
Saga is a series of local transactions; every local transaction happens within the boundary of the
(micro)-service.

Saga has ACD characteristics, distributed transactions ACID characteristics [1]; the real
challenge is to deal with the lack of isolation (I) in an elegant and effective way.

A transaction in a microservice architecture should be eventually consistent.

Compensations are the actions to apply when a failure happens to leave the system in a
consistent state.

Compensations actions must be idempotent; they might be called more than once.

[1]
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.4.0/product-overview/acid.h
tml

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.4.0/product-overview/acid.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.4.0/product-overview/acid.html

#RedHatOSD

Saga Pattern: the lack of I
Lack of isolation causes:

● Dirty reads: a transaction read data from a row that is currently modified by another running
transaction

● Lost updates: two different transactions trying to update the same “data”. One of them
doesn’t see the new value when trying to update

● Non-repeatable reads: re-reads of the same record (during an inflight transaction) don’t
produce the same results

A Saga should take actions to minimize the impact of lack of isolation.

How you implement this set of countermeasures (against isolation anomalies) determine how
good is a microservice.

Several techniques available: semantic lock, design commutative operations, ...

#RedHatOSD

Saga Pattern: semantic lock
*_PENDING states, saved into the local microservice store, indicate that a Saga instance is in
progress and it is manipulating some data needing an isolation level (for example a customer’s
account)

If another Saga instance starts, it must evaluate the existing *_PENDING states and pay
attention on them.

Some strategies when detecting PENDING states:

● The Saga instance will fail.

● The Saga instance will block until the lock is released.

#RedHatOSD

Saga Pattern

Book
ticket

Book
ticket
insurance

Payment

Cancel
ticket

Cancel
ticket insurance

compensation

Book
ticket

Book
ticket
insurance

Payment

Ticket Saga

Ticket Saga (Payment Error)

book a ticket

book a ticket

Payment
error

#RedHatOSD

Saga Choreography vs Orchestration

How to implement a Saga and how to coordinate the execution of local transactions
within a microservice?

Two approaches:

● Choreography: the (micro)-service is responsible for emitting events at the
end of its local transaction. The event triggers the start of new local
transactions in (micro)-services subscribed to this event.
The (micro)-service must provide the logic to compensate.

● Orchestration: there is a central coordinator (a stateful entity) that triggers
the local transactions in (micro)-services. The coordinator has the logic to
compensate and maintain the status of the global transaction.

#RedHatOSD

Saga Choreography
Every (micro)-service is responsible for sending events and subscribing to events.
It must define a strategy to handle the events.

Decentralized approach, all the systems work independently and they cooperate for a
common goal (without having knowledge on what is it).

Participants cannot be available during the execution of a Saga instance, no SPOF.

Events are sent to a message broker system (Apache Kafka, ActiveMQ, ...) and they
contain a correlation-id

It works if you have a limited number of services participating in the transaction
(basic sagas)

Easy to code but difficult to govern it. It’s difficult to monitor and reconstruct the
overall status of a Saga.

#RedHatOSD

Saga Choreography

Ticket Service

Insurance
Service

Payment
Service

Message Broker System

PAYMENT_ACCEPTED event
must be handled by
Insurance Service
Ticket Service

ticket table

insurance table

payment table

TICKET_CREATED
ORDER_CREATED

ticket topic

order topic

payment topic

PAYMENT_ACCEPTED
TICKET_BOOKED_PENDING
TICKET_BOOKED

INSURANCE_BOOKED_PENDING
INSURANCE_BOOKED

PAYMENT_CONFIRMED

#RedHatOSD

Saga Choreography

Ticket Service

Insurance
Service

Payment
Service

Message Broker System

PAYMENT_REFUSED event
must be handled by
Insurance Service
Ticket Service

ticket table

insurance table

payment table

TICKET_CREATED
ORDER_CREATED

ticket topic

order topic

payment topic

PAYMENT_REFUSED
TICKET_BOOKED_PENDING
TICKET_PAYMENT_REFUSED

INSURANCE_BOOKED_PENDING
INSURANCE_PAYMENT_REFUSED

PAYMENT_CONFIRMED

#RedHatOSD

Saga Choreography

One approach could be the usage of the outbox pattern:
● Create a database table for the events.
● Atomically update the internal microservice database and insert a record into

the table for the events.

The Change Data Capture Component (Connector) reads the table for the events
and publish the events to the message broker.
https://github.com/debezium/debezium-examples/tree/master/outbox

ticket table

Ticket Service

ticket events table

update ticket state

ticket events topic
Change Data
Capture

transactional

We don’t want to lose any events and leave the system inconsistent.
How to atomically update the store and send the event?

https://github.com/debezium/debezium-examples/tree/master/outbox

#RedHatOSD

Saga Choreography

Other approaches:

● Event Sourcing: services only store changing-state events using an
Event Store: Event Store is the events database and also behaves as a
message broker.
The state of an entity is reconstructed by a service, replaying the events from
the Event Store.

● Database transaction log mining: a process extracts the database updates
using the database transaction log and publish them to the message broker.

We don’t want to lose any events and leave the system inconsistent.
How to atomically update the store and send the event?

#RedHatOSD

Saga Choreography

Services must discard duplicate events.

A message log table can be used to track all events already processed.

The correlation-id (event-id) can be used to find the event into message log table.

#RedHatOSD

Saga Choreography

Let’s imagine that we don’t receive a PAYMENT_ACCEPTED or
PAYMENT_REFUSED event.

Are we sure that the Payment Service authorized the operation?
How long should we wait before compensating (timeout)?

The real limit of choreography is the complexity in implementing the logic to
coordinate the overall business transaction.

The lack of a Saga Coordinator is the real limit of the Saga Choreography
approach.

#RedHatOSD

Saga Choreography
a custom solution with Quarkus, Debezium and Kafka

● Ticketing Service, a java native ms with quarkus
● Insurance Service, a java native ms with quarkus
● Payment Service, a java native ms with quarkus
● Debezium is the change data capture:

streams events from event database to Kafka
● Debezium also sends data to Elasticsearch (Kibana)
● Apache Kafka as message broker
● Run all on OpenShift
● Apache Kafka on OpenShift using AMQ Streams
● Some Prometheus and Grafana stuff
● Some images from quay.io

#RedHatOSD

DEMO
SAGA Application - Source Code

https://github.com/redhat-italy/rht-summit2019-saga
http://www.youtube.com/watch?v=7cLbRIc3TWU

